Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Biomed Eng ; 6(8): 957-967, 2022 08.
Article in English | MEDLINE | ID: covidwho-1931410

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for versatile diagnostic assays that can discriminate among emerging variants of the virus. Here we report the development and performance benchmarking of an inexpensive (approximately US$0.30 per test) assay for the rapid (sample-to-answer time within 30 min) colorimetric detection of SARS-CoV-2 variants. The assay, which we integrated into foldable paper strips, leverages nucleic acid strand-displacement reactions, the thermodynamic energy penalty associated with single-base-pair mismatches and the metal-ion-controlled enzymatic cleavage of urea to amplify the recognition of viral RNAs for the colorimetric readout of changes in pH via a smartphone. For 50 throat swab samples, the assay simultaneously detected the presence of SARS-CoV-2 and mutations specific to the SARS-CoV-2 variants Alpha, Beta and Gamma, with 100% concordance with real-time quantitative polymerase chain reaction and RNA sequencing. Customizable and inexpensive paper-based assays for the detection of viruses and their variants may facilitate viral surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Colorimetry , Humans , Nucleotides , SARS-CoV-2/genetics
2.
Sens Actuators B Chem ; 362: 131765, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1757833

ABSTRACT

SARS-CoV-2 is one of the greatest threats to global human health. Point-of-care diagnostic tools for SARS-CoV-2 could facilitate rapid therapeutic intervention and mitigate transmission. In this work, we report CRISPR-Cas13a cascade-based viral RNA (Cas13C) assay for label-free and isothermal determination of SARS-CoV-2 and its mutations in clinical samples. Cas13a/crRNA was utilized to directly recognize the target of SARS-CoV-2 RNA, and the recognition events sequentially initiate the transcription amplification to produce light-up RNA aptamers for output fluorescence signal. The recognition of viral RNA via Cas13a-guide RNA ensures a high specificity to distinguish SARS-CoV-2 from MERS-CoV and SARS-CoV, as well as viral mutations. A post transcription amplification strategy was triggered after CRISPR-Cas13a recognition contributes to an amplification cascade that achieves high sensitivity for detecting SARS-CoV-2 RNA, with a limit of detection of 0.216 fM. In addition, the Cas13C assay could be able to discriminate single-nucleotide mutation, which was proven with N501Y in SARS-Cov-2 variant. This method was validated by a 100% agreement with RT-qPCR results from 12 clinical throat swab specimens. The Cas13C assay has the potential to be used as a routine nucleic acid test of SARS-CoV-2 virus in resource-limited regions.

3.
PLoS One ; 16(1): e0245280, 2021.
Article in English | MEDLINE | ID: covidwho-1388897

ABSTRACT

rfaRm is an R package providing a client-side interface for the Rfam database of non-coding RNA and other structured RNA elements. The package facilitates the search of the Rfam database by keywords or sequences, as well as the retrieval of all available information about specific Rfam families, such as member sequences, multiple sequence alignments, secondary structures and covariance models. By providing such programmatic access to the Rfam database, rfaRm enables genomic workflows to incorporate information about non-coding RNA, whose potential cannot be fully exploited just through interactive access to the database. The features of rfaRm are demonstrated by using it to analyze the SARS-CoV-2 genome as an example case.


Subject(s)
RNA, Untranslated/genetics , Sequence Analysis, RNA/methods , Software , Databases, Genetic , Humans , RNA, Untranslated/chemistry , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL